M1.(a) 1. Calcium ions diffuse into myofibrils from (sarcoplasmic) reticulum;

- 2. (Calcium ions) cause movement of tropomyosin (on actin);
- 3. (This movement causes) exposure of the binding sites on the actin;
- 4. Myosin heads attach to binding sites on actin;
- 5. Hydrolysis of ATP (on myosin heads) causes myosin heads to bend;
- 6. (Bending) pulling actin molecules;
- 7. Attachment of a new ATP molecule to each myosin head causes myosin heads to detach (from actin sites).

5 max

- (b) 1. Releases relatively small amount of energy / little energy lost as heat; Key concept is that little danger of thermal death of cells
 - 2. Releases energy instantaneously; *Key concept is that energy is readily available*
 - 3. Phosphorylates other compounds, making them more reactive;
 - 4. Can be rapidly re-synthesised;
 - 5. Is not lost from / does not leave cells.

2 max

[7]

M2.(a)

	Photosynthesis	Anaerobic respiration	Aerobic respiration
ATP produced	*	*	*
Occurs in organelles	*		*
Electron transport chain involved	~		*

1 mark per column

Mark ticks only. Ignore anything else if different symbols such as crosses are used as well.

If crosses are used instead of ticks allow cross as equivalent to a tick.

3

1

2 max

Both sides correct, but allow other recognised symbols or words for phosphate ion. Reject P unless in a circle. Accept = as equivalent to arrow Accept reversible arrow Ignore any reference to kJ / water

- (c) 1. Energy released in small / suitable amounts;
 - 2. Soluble;
 - Involves a single / simple reaction;
 1. In context of release, not storage. Ignore producing energy / manageable amounts.
 2. Reject "broken down easily / readily". Reject "quickly / easily resynthesised".
- (d) 1. ATP cannot be stored / is an immediate source of energy;
 - 2. ATP only releases a small amount of energy at a time;

[8]

2

M3. (a) Electrons transferred down electron transport chain;
 Provide energy to take protons / H⁺ into space between membranes;
 Protons / H⁺ pass back, through membrane / into matrix / through ATPase;
 Energy used to combine ADP and phosphate / to produce ATP; Accept: alternatives for electron transport chain.

3 max

	(b)	(i)	Prevent damage to mitochondria caused by water / osmosis / differences in water potential; <i>Accept: other terms that imply damage e.g. shrink / burst</i>	1	
		(ii)	 Glucose is used / broken down during <u>glycolysis</u> in cytoplasm / not in mitochondria; <i>Accept: 'glucose is converted to pyruvate' for description of breakdown</i> Glucose cannot cross mitochondrial membrane / does not enter mitochondria; <i>Accept: only pyruvate can</i> 	2	
		(iii)	Terminal / final acceptor (in electron transport chain) / used to make water; <i>Could be shown by symbols</i>	1	[7]
М4.		(a) (ii)	 2 (molecules) Cannot pass out of cell; Quickly / easily broken down (hydrolysed) / broken down in a on-step reaction / immediate source of energy; Stores / releases <u>small</u> amounts of energy; <i>Do not credit "producing energy"</i> 	1 max 2	
	(b)		rmed when reduced NAD used to <u>reduce</u> / donate H ions byruvate / convert pyruvate to ethanol;	1	[4]

	muscle	cells use more ATP (than skin cells)(not just more respiration);	2	
(b)	(i)	oyruvate;	1	
	h	ydrogen released / reduced NAD formed;	2 max	
(c)	NAD / FAD reduced / hydrogen attached to NAD / FAD; H ⁺ ions / electrons transferred from coenzyme to coenzyme / carrier to carrier / series of redox reactions; energy made available as electrons passed on; energy used to synthesise ATP from ADP and phosphate / using ATPase; H ⁺ / protons passed into intermembrane space; H ⁺ / protons flow back through stalked particles / enzyme;		3 max	[8]
	4	(2 marks for correct answer) 0% / 0.4 of 2800 / 38;	2 1	
(b)	(ii) la o	actate / lactic acid has built up / been produced; xygen used to break down lactate / convert it back to	1	[6]
	(c)	 (b) (i) (i) (ii) (ii) (ii) (ii) (ii) (ii	 (ii) carbon dioxide formed / decarboxylation; hydrogen released / reduced NAD formed; acetyl coenzyme A produced; (c) NAD / FAD reduced / hydrogen attached to NAD / FAD; H* ions / electrons transferred from coenzyme to coenzyme / carrier to carrier / series of redox reactions; energy made available as electrons passed on; energy used to synthesise ATP from ADP and phosphate / using ATPase; H* / protons passed into intermembrane space; H* / protons flow back through stalked particles / enzyme; (a) (i) 29.47(29.5); (2 marks for correct answer) 40% / 0.4 of 2800 / 38; (ii) released as heat; (b) (i) glucose only partly broken down / only broken down to lactate; 	 (b) (i) pyruvate; (ii) carbon dioxide formed / decarboxylation; hydrogen released / reduced NAD formed; acetyl coenzyme A produced; (c) NAD / FAD reduced / hydrogen attached to NAD / FAD; H' ions / electrons transferred from coenzyme to coenzyme / carrier to carrier / series of redox reactions; energy made available as electrons passed on; energy used to synthesise ATP from ADP and phosphate / using ATPase; H' / protons passed into intermembrane space; H' / protons flow back through stalked particles / enzyme; (a) (i) 29.47(29.5); (2 marks for correct answer) 40% / 0.4 of 2800 / 38; (b) (i) glucose only partly broken down / only broken down to lactate; (ii) lactate / lactic acid has built up / been produced; oxygen used to break down lactate / convert it back to pyruvate / glucose / glycogen;

(more cristae / larger surface area) for electron transport chain /

more enzymes for ATP production / oxidative phosphorylation;

M5.

(a)

- M7. (a) ATP 1 (b) (i) 2.57:1/2.6:1/18:7;Correct answer however derived scores two marks72:28 scores one markCorrect working from wrong figures scores 1 mark Accept 0.4 / 0.39 / 0.389 / 0.3889 2 max
 - Low intensity;At low intensity/below 40% mainly fat used / at high intensity/ above 40% mainly carbohydrate used;Long duration exercise;Percentage fat used increases with time / percentage carbohydrate used decreases with time;

[6]